Images create Emotions…

…and emotions lead to interest. That is one of our thoughts behind Funky Retail. This video should explain what we mean. So please, see for yourself!

Just a short note on the analytics: The data we collect is merely an example to show that it is possible to connect the physical retail space. There may be other data that is more vital. The colourful, flashing lights also have the purpose to show that actions are recorded. We’re not necessarily saying future stores have to flash like crazy in all the different colours…(although we do think that would be quite cool).

Watch the Funky Interview here!

Tiles in color, plus finalized arch poster

Now that we have all major events (except the hybris xmas party) behind us, we can finally focus on getting a few projects really finalized. Tiles  made huge progress over the last weeks and I just got the fully-colored tiles in, plus I have a finalized architecture poster that I want to share with you. Big kudos go out to Elke and DerGrueneFish, our booth building partners for this and most other projects. The tiles (21 in total, for 3 complete demo sets) are colored in 4 fresh colors for a change (no boring white!). I absolutely love the way they look.  Over one day, I was soldering the first 7 which are currently connected to one hub.

IMG_20141208_114334

For the poster, Kathi at SNK did an awesome job. I already ordered our poster which we’ll then present at the hybris summit 15 in Munich at our booth. Having a descriptive poster will greatly help us to explain the IoT setup for this prototype. Right now we expect to have cans on top of the tiles, so we made that part of the poster.

tiles-90x60

 

 

Just to recap the architecture, have a read:

  • “Tiles” are the wirelessly connected platforms. We use Punchthrough’s LightBlue Bean and remove the battery holder to make the platforms 8mm high. We still use CR2032 batteries, which gives us about 1 week battery life right now. We would get more, but I send our a MetaEvent every 10sec which is hard on the battery.
  • The “Hub” collects all data. It scans for tiles, continuously, and connects. The hub runs on the raspberry pi, uses a BLE dongle (choice is key here) and uses node.js for all programming. It sends on data to the server with CoAP – a UDP-based IoT protocol.
  • The “Server” collects all data for all hubs (yep, there can be many) and provides the necessary APIs for managing the User/Tile association, authentication and authorization (Oauth2 used here), etc.

 

One change over the last days was that we can now associate products with the tiles. That means a store manager can just scan a tile (NFC or QR) and then add this tile to his private analytics page. The UI of these web pages is currently being worked on and will feature a few cool features such as a heartbeat every 10 seconds or the color of the scanned tile, that gets pulled via some static, factory-decided data. This system is all up and running now, currently with one live hub and 7 tiles connected.

14 - 2

What’s left is the callback mechanism plus the web ui. The callback mechanism will “call out” to external systems for each event reveived. So if a LiftEvent is received and a webhook is configured, we’ll send out a HTTP Post to the configured external service. I also plan to pull in the product details from YAAS, hybris’ on demand API offering.

14 - 1

 

Tiles Update – we've added blinky blinky

Our project Tiles, little BLE-connected platforms for customer interaction tracking, is entering a project phase which allows me to blog and inform you a bit more. Since yesterday night, the Raspberry PI and Arduino in the hub uses one power source. This makes the overall design easier. We also have been working on a Raspberry PI B+ hat, using Eagle, to further optimize our design.

One visible change is also that it now blinks 🙂 The hub rotates an LED light to signal the BLE scanning process. It flashes once you liftup the product, well, the apple in this case.

IMG_20141126_204216

 

We’ve now also locked down the architecture and below is a rough sketch that should help understand it. Again, a quick summary below.

tiles technical architecture

  • “Tiles” are the wirelessly connected platforms. We use Punchthrough’s LightBlue Bean and remove the battery holder to make the platforms 8mm high. We still use CR2032 batteries, which gives us about 1 week battery life right now. We would get more, but I send our a MetaEvent every 10sec which is hard on the battery.
  • The “Hub” collects all data. It scans for tiles, continuously, and connects. The hub runs on the raspberry pi, uses a BLE dongle (choice is key here) and uses node.js for all programming. It sends on data to the server with CoAP – a UDP-based IoT protocol.
  • The “Server” collects all data for all hubs (yep, there can be many) and provides the necessary APIs for managing the User/Tile association, authentication and authorization (Oauth2 used here), etc.

One more thing – I’ve connected the server to Xively, a data logging platform. We collect mainly the battery rundown to estimate battery life and also the temperature values from the lightblue beans. At this point I just want to share some nice graphs to show you how much sense it makes to track that data. It will definitely help us to optimize the design / battery consumption further. Right now we stay optimized for demo purposes, but we can later reduce the events sent for example to get a better battery life.

Screen Shot 2014-11-27 at 9.49.19 AM

Screen Shot 2014-11-27 at 9.49.13 AM