General Update & Final Architecture Diagram for Expose

It’s been a while since I wrote about expose, but finally I am sitting at the Munich airport again, which is my favorite time to write blog posts. From a technical point of view, expose is in the final phase of being polished. We’ve worked with the designers at SNK to create great user interfaces, ironed out a few bugs here and there and are currently thinking of two showrooms (Munich and New York) to install this prototype. While these discussions and the details will need a few more weeks, I think technically this prototype is locked-down and done. So it’s time to take a final look at it and wrap it all up. Continue reading

And about 500 Customer Accounts later…

The #HybrisSummit is over, it was a blast. As our bullseye prototype is based on YaaS, we’ve collected a lot of data and I quickly wanted to share that with you. So here we go: we’ve had >500 customer accounts created &  >1200 product liftups in just two days! That means >500 demos that we’ve given, very often more have been watching of course!

IMG_20160216_111405

Screen Shot 2016-02-18 at 8.42.01 PM Screen Shot 2016-02-18 at 8.35.15 PM Screen Shot 2016-02-18 at 8.34.57 PM

If you look a bit deeper, you’ll see that the top product was the “Toucan”, our very colorful and sweet/medium style candy. The data that we’ve collected for the profile questionnaires is also really interesting. It will help us with upcoming orders: about 50% of all customers answer they like sweet candy, followed by sour and salty.

Hope you like it, please reshare & comment as you like!

Enter the next Dimension…

…of Customer Engagement!

Oh no, marketing blabla!! … Pfff, so what. This prototype is cool enough to take it! Well it probably is… will be… okay, we still have to build it. But it will definitely be ready for the SAP Hybris Summit!…we guess. It all starts with this box:

IMG_1996

Inside it is not our new prototype but an essential piece of machinery belonging to our new partners NavVis. It’s an M3 Mapping Trolley used for “easy and fast 3D mapping of entire buildings in photorealistic quality.”

IMG_2012

It was fast and also very easy. That’s why Max was allowed to have a go…

IMG_2013

We had our Labs Innovation Space scanned and will create some kind (TOP SECRET!) of virtual shopping world integrated with Hybris YaaS. Again, visit us at the Summit to see the real thing for the very first time! To give you a taste here’s a link to a demo showcase provided by NavVis.

Bullseye – in-store targeting and analytics – an update

Yes, it’s more than  a month ago since the last update. The assumption was right – tons of work was ahead of us. And still things need to be optimized, beautified and fixed… but an end is in sight! We’ve made huge progress… we got products, we got a name, we overhauled the technology and worked with the designers to beautify the whole prototype. All while maintaining full YaaS compatibility and flexibility.

IMG_20151214_144959#1 – the name:  bullseye. We think it’s great for a prototype about in-store targeting and analytics.

#2 – the products: we switched from perfume to candy. This morning, I got the confirmation for >180kg of candy delivered next week to the hybris labs premises here in Munich 🙂

#3 why do we need all that candy? At this point, we also got full confirmation to make this prototype the central piece of art/technology at the hybris summit 2016. We’re running our recommendation and analytics system for two days at this event. If you can, please stop by!

In case you’re completely unsure what this is all about, here’s a brief summary – directly form the documentation that I’ve written yesterday.

Screen Shot 2016-01-15 at 3.37.30 PM

So let’s take a more technical view on the updates. Below is the current arch diagram, also soon to be even more shiny. For now, all technical goodness is on it. Let’s step through each part.

Bullseye - plat Technical Architecture (1)

platforms

bullseye is a YAAS-based in-store product recommendation and analytics system. The end-user facing and visible components are the platforms (here numbered from 1-8) that can be programmed via commands in various ways. For product selection, for example, the platforms may receive color events. The platforms also contain one or multiple sensors whose values can be requested. For power supply and communication, the platforms are connected to a base station via a standard Micro USB cable. As a typical IoT edge device such as a Raspberry PI has only a limited number of USB ports and limited power supply, standard USB 2.0 hubs are used in between the base stations USB ports and the platforms.

Recent updates here, not including bug fixes:

  • We’ve optimized the serial communication – previously all commands sent to the platforms (serial, byte-based communication) responded with an event that repeated the data for confirmation. We’re only responding with a JSON-formatted response in case the command triggered an EEPROM update or a sensor reading.
  • We’ve implemented new commands, mainly for light effects. The platforms can now flash in RGB colors (random flashing, simulates a “thinking” system” and a few other color effects.

Next, the base station – that’s where the platforms connect to via USB cable:

The base station is acting as a gateway between the platforms and the internet. It connects to the internet via the IoT standard protocol MQTT and to the individual platforms via a serial, byte-based communication protocol. The base station is subscribed to a MQTT topic for the base station itself and issues commands that are sent to this topic to all connected platforms. At the same time, it is also subscribed to individual topics for each platform – this allows each connected platform to be addressed individually. The central communication broker in this system is a MQTT broker. It is the essential element that connects the base stations to the internet and allows the remaining bullseye system to send commands to the platforms and to receive events from them.

Recent changes:

  • We can now address the base station itself with a dedicated MQTT topic and the base station forwards the command to all connected platforms. This minimizes the network load and is great in combination with the “flash” command. We use this command to simulate a thinking system, right before the results are presented with individual lit-up platforms.
  • MQTT reconnect behavior: we’v fixed a major bug around the reconnect behavior. From time to time, our MQTT connection is closed due to network issues. We’re now able to subscribe to all platform topics so that the system stays fully functional.
  • Our base stations are now Raspberry PIs and we use the excellent forever-service to start our node process in a “forever” fashion. Even if the process is killed, forever restarts it immediately.

Let’s move on to the bullseye YaaS package:

The bullseye package is part of the YAAS marketplace and can be subscribed to by a client project. The package contains the bullseye service, offering various UIs for the end user and retailer, and also the central matching service.  The matching service is a completely tenant-aware service, that uses the profile input from a customer questionnaire to score a selection of products. The result is a scored list of products that are mapped to platform IDs and then addressed with a color command over MQTT. This results in a physical selection of products based on a previous product matching algorithm. The bullseye service also contains an internal analytics module that is powering various analytics UIs. The bullseye builder module is used by a client project to configure the bullseye system. Typical configuration includes the mapping of products to platforms and the setup of a customer-facing questionnaire with scoring information for each correctly answered question.

Changes, well, tons. Let’s see:

  • The matching service is the central component, taking the profile info and matching it with products based on the questionnaire and scoring information. We’ve now implemented a proper blocking behavior – a user enters a session and operates the base/shelf alone for 30 seconds. If he chooses to keep using the shelf, the session is extended.
  • We’ve created 3 analytics screens that connect to real-time data via socket.io channels. All analytics is in memory, which is OK for a prototype. It’s nicely part of a single node.js library and could easily be persisted. Below are some of the analytics screens. More later on when the screens have been completely redesigned.
  • The questionnaire / form UI is already beautified. in the pics below, you see the result. It works excellently on desktop/tablet/phone, fully responsive. Form resubmission for flashing effects and the back button to play again complete the changes here.
  • A product info screen, connected to live product liftups, has been added.
  • A randomizer feature will perform a slideshow among the 3 analytics and product info screens. For events, we’re able to launch it and it just runs and shows all screens over time.
  • More… but this is getting too long…

So – you probably want to see some pictures, right? See below. What’s next? While a lot has been done, we’re still working on finishing touches. Potentially we’ll save the product results to a customer’s cart – so when she opens the cart later at home or at the event, the cart is prefilled with the matching products. We also need to take care of all kind of UI related small issues and we need to make sure the logistic for the hybris summit are taken care of. We’re creating an amazing construction, a pole-like art installation, together with our booth builders here in Munich. Stay tuned!

The state of the end-user questionnaire UI:

Screen Shot 2016-01-15 at 3.19.21 PM Screen Shot 2016-01-15 at 3.19.33 PMScreen Shot 2016-01-15 at 3.19.25 PM  Screen Shot 2016-01-15 at 3.19.40 PM

The state of the builder module:

Screen Shot 2016-01-15 at 3.21.16 PM Screen Shot 2016-01-15 at 3.21.25 PM Screen Shot 2016-01-15 at 3.21.39 PM Screen Shot 2016-01-15 at 3.21.52 PM

And finally some of the early analytics screens:

Screen Shot 2016-01-15 at 4.15.48 PM Screen Shot 2016-01-15 at 4.15.54 PM Screen Shot 2016-01-15 at 4.16.12 PM Screen Shot 2016-01-15 at 4.16.22 PM